Final	Exam	Review	12/4/2	023
			1 - 1 -	

SI Final Exam Review Session Thu Dec 7 at 5:30pm in UNIV 019	1	
 •	×	
Posted Nov 28, 2023 4:19 PM		
Supplemental Instruction will be holding a review session for the Final Exam.		
SI Final Exam Review Session		
Date: Thursday, December 7, 2023		
Time: 5:30pm - 7:20pm		
Location: UNIV 019		
Reminder: There are also regularly scheduled SI sessions and office hours that are held throughout the week. This information can be found under the Fall 2023 Supplemental Instruction course on Brightspace.		
Final Exam 🗸	×	
Posted Nov 14, 2023 2:06 PM		
The final exam will be on Friday, December 15 from 10:30)am-12:30pm.	
A memo with detailed information will be posted in Bright	space closer to the exam.	
Plan travel arrangements accordingly. No final exams will l	be given early.	
	,	

Lesson 29 #4

Let the function

$$g(x,y) = -rac{1}{2}x^2 + xy - rac{1}{25}y^4 - 5,$$

whose first order partial derivatives are

$$g_x = -x + y$$
 and $g_y = x - \frac{4}{25}y^3$.

Determine the critical points and show how many of these points are relative maxima, relative minima, and saddle points. (Answer from the smallest x-values to the largest).

Formula Sheet

Second Derivative Test

Given the critical point (a, b), such that $f_x(a, b) = 0$ and $f_y(a, b) = 0$, and let

$$D(a,b) = f_{xx}(a,b) f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

- If D > 0 and $f_{xx}(a, b) > 0$ then f(a, b) is a relative minimum.
- If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a relative maximum.
- If D < 0, then f(a, b) is a saddle point.

$$g_{x} = -x + y \qquad g_{y} = x - \frac{4}{25}y^{3}$$

$$-x + y = 0 \qquad 1 \qquad y = x \rightarrow 2 \qquad y - \frac{4}{25}y^{3} = 0$$

$$x - \frac{4}{25}y^{3} = 0 \qquad 2$$

$$y(1 - \frac{4}{25}y^{2}) = 0$$

$$y = 0$$

$$y = \pm \frac{5}{2}$$
Because $x = y$

$$(0,0)$$

$$(\frac{-5}{2}, -\frac{5}{2})$$

$$(\frac{5}{2}, \frac{5}{2})$$

$$g_{xx} = -x + y \qquad g_{y} = x - \frac{y}{25} y^{3} \qquad D(0,0) = -120 \text{ saddle point}$$

$$g_{xx} = -1 \qquad g_{yy} = -\frac{12}{25} y^{2} \qquad D(\frac{5}{2}, \frac{5}{2}) = \frac{11}{25} (\frac{15}{4}) - 1 = 3 - 1 = 3$$

$$g_{xy} = 1 \qquad g_{yy} = -\frac{12}{25} y^{2} - 1 \qquad g_{xx} (\frac{5}{2}, \frac{5}{2}) = -120 \qquad local mo$$

$$D(x_{1}y) = (-1)(\frac{-12}{25}y^{2}) - [1]^{2} \qquad = \frac{12}{25}y^{2} - 1 \qquad local mo$$

$$g_{yy} = -\frac{12}{25}y^{2}$$

$$D(-\frac{5}{2}, -\frac{5}{2}) = \frac{12}{25}(\frac{15}{4}) - 1 = 3 - 1 = 2.70$$

$$g_{xx} \left(-\frac{5}{2}, -\frac{5}{2}\right) = -|20|$$

$$|bcal max|$$

$$D(\frac{5}{2}, \frac{5}{2}) = \frac{12}{25}(\frac{25}{4}) - 1 = 3 - 1 = 2.70$$

Compute the second order partial derivatives of

$$f(x,y) = 3y \cdot e^{\cos(5x-4)}$$

$$f_{x}(x,y) = 3y e^{\cos(5x-4)} \cdot (-\sin(5x-4)) \cdot 5$$

$$f_{y}(x,y) = 3e^{\cos(5x-4)} \cdot (-\sin(5x-4)) \cdot 5$$

$$f_{x}(x,y) = -15y e^{\cos(5x-4)} \cdot \cos(5x-4) \cdot 5 + (-15y) e^{\cos(5x-4)} \cdot (-\sin(5x-4))(5) \sin(5x-4)$$

$$= -75y e^{\cos(5x-4)} \cdot \cos(5x-4) + 75y e^{\cos(5x-4)} \cdot (\sin(5x-4))^{2}$$

$$= 75y e^{\cos(5x-4)} \cdot (-\cos(5x-4) + (\sin(5x-4))^{2}$$

$$f_{yy}(x,y) = 0$$

$$f_{xy}(x,y) = f_{yx}(x,y) = 3e^{\cos(5x-4)} \cdot (-\sin(5x-4)) \cdot 5 = -15e^{\cos(5x-4)} \cdot \sin(5x-4)$$

Practice Problem

Submissions are not permanently recorded

A large building with a rectangular base has a curved roof whose height is

$$h(x,y) = 84 - 0.04x^2 + 0.027y^2$$

The rectangular base extends from $-50 \le x \le 50$ feet and $-100 \le y \le 100$ feet.

Find the average height of the building, round your answers to the nearest 3 decimal places.

Area of vectoragle = 100 × 200 = 20,000

Ave =
$$\int_{50}^{100} (84 - 0.04x^{2} + 0.027y^{2}) dy dx$$
=
$$\int_{50}^{20,000} \begin{cases} 84y - 0.04x^{2}y + 0.027y^{3} \\ y = -100 \end{cases} dx$$
=
$$\int_{50}^{60} (9400 - 4x^{2} + 9000) - (-9400 + 4x^{2} - 9000) dx$$
=
$$\int_{10,000}^{60} (34,900 - 8x^{2}) dx$$
=
$$\int_{20,000}^{60} (34,900 - 8x^{2}) dx$$
=
$$\int_{20,000}^{60} (34,900 - 9x^{2}) dx$$
=
$$\int_{20,000}^{60} (34,900 - 9x^{2}) dx$$